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Abstract

We determine under which conditions is the Langlands quotient of
an induced representation of the form δo σ, where δ is an irreducible
essentially square-integrable representation of a general linear group
and σ is a discrete series representation of the classical p-adic group,
isomorphic to its Aubert dual.

1 Introduction

Let F denote a non-archimedean local field and let Gn stand for the sym-
plectic or (full) orthogonal group having split rank n. The involution on the
Grothendieck group of the smooth finite-length representations of a reductive
group has been intensively studied by many authors, and we use an involution
defined for general reductive p-adic groups in [2] and [18]. This involution
is known as the Aubert involution and the image of a representation under
this involution is called the Aubert dual of a representation. In this paper
we regard the Aubert dual of an admissible finite length representation as a
genuine representation, taking the + or − sign in such way that we obtain
the positive element in the appropriate Grothendieck group.
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The Aubert involution has a number of prominent applications in the
representation theory of classical p-adic groups, and one would also like to
gain a deeper knowledge on the explicit structure of the Aubert duals of
irreducible representations.

In our previous work ([11, 12]), we obtained an explicit description of the
Aubert duals of certain classes of discrete series representations of Gn, and in
this paper we use developed methods to identify certain classes of irreducible
representations which are fixed by the Aubert involution, i.e., which are iso-
morphic to their Aubert duals. We tackle this problem for the Langlands
quotients of the generalized principal series of the group Gn. We note that
the generalized principal series is an induced representation of the form δoσ,
obtained by the parabolic induction with respect to the maximal parabolic
subgroup, where the inducing representation δ ⊗ σ has an irreducible essen-
tially square-integrable representation on the general linear group part and
an irreducible square-integrable representation of the classical group part. If
νxδ is unitarizable for x < 0, where ν = | det |F , then the generalized prin-
cipal series δ o σ has a unique irreducible (Langlands) quotient, which is

also isomorphic to the unique irreducible subrepresentation of δ̃ o σ. Such
irreducible non-tempered representations can be observed as the first step in
the Langlands classification of the non-unitary dual of Gn.

To obtain the necessary conditions under which the Langlands quotient
of the generalized principal series is isomorphic to its Aubert dual, we use the
Jacquet modules method and some elementary properties of the Aubert invo-
lution, together with descriptions of the Jacquet modules of certain discrete
series representations, obtained in [7, 10].

Afterwards, we explicitly determine the Aubert duals of Langlands quo-
tients satisfying the obtained necessary conditions, using methods introduced
in [11], and further developed in [12]. Perhaps a bit surprisingly, an important
role in such a procedure is, in the considered case, played by the composition
factors of the generalized principal series δ o σ with a strongly positive σ,
obtained in [17] and [9, Proposition 3.2]. Such a description of the compo-
sition factors enables us to control the Jacquet modules of the investigated
non-tempered representations, similarly as in [8].

We summarize our main results in the following theorem.

Theorem 1.1. The Langlands quotient of the generalized principal series
δ([νxρ, νyρ]) o σ, x + y > 0, is isomorphic to its Aubert dual if and only if
one of the following holds:
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(1) The discrete series representation σ is cuspidal, x = y, and νxρ o σ is
irreducible.

(2) The discrete series representation σ is cuspidal, x = 0, y = 1, and ρo σ
reduces.

(3) The cuspidal representation ρ is self-contragredient, the induced repre-
sentation ναρo σcusp reduces for α > 0 (here σcusp stands for the partial
cuspidal support of σ), y = α + 1, and one of the following holds:

(i) x is a half-integer, 3
2
≤ x ≤ α, and σ is the unique irreducible

subrepresentation of the induced representation

νxρ× νx+1ρ× · · · × ναρo σcusp,

(ii) x is a positive integer, x ≤ α, and σ is the unique irreducible
subrepresentation of the induced representation

νxρ× νx+1ρ× · · · × ναρo σcusp,

(iii) x = 0 and σ is the unique irreducible subrepresentation of the in-
duced representation

νρ× ν2ρ× · · · × ναρo σcusp.

We will now describe the contents of the paper in more details. In the
following section we set up the notation and terminology, and prove some
technical results which will be helpful in our investigation. In the third sec-
tion we state and prove our main results, using a case-by-case consideration.

The author would like to thank the referee for helping to improve the
presentation style and for the help with Proposition 3.2.

This work has been supported by Croatian Science Foundation under the
project 9364.

2 Notation and preliminaries

Let F denote a non-archimedean local field of the characteristic different
from two.

3



Let us first recall the definition of the Aubert involution and its basic
properties.

For a connected reductive p-adic group G defined over F , let Σ denote
the set of roots of G with respect to a fixed minimal parabolic subgroup and
let ∆ stand for a basis of Σ. For Θ ⊆ ∆, we let PΘ be the standard parabolic
subgroup of G corresponding to Θ and let MΘ be the standard Levi factor
of G corresponding to Θ.

For a parabolic subgroup P of G with the Levi factor M and a repre-
sentation σ of M , we denote by iM(σ) a normalized parabolically induced
representation of Gn induced from σ. For an admissible finite length repre-
sentation σ of G, the normalized Jacquet module of σ with respect to the
standard parabolic subgroup having Levi factor equal to M will be denoted
by rM(σ). We recall the following definition and results from [2, 3]:

Theorem 2.1. Define the operator on the Grothendieck group of admissible
representations of finite length of G by

DG =
∑
Θ⊆∆

(−1)|Θ|iMΘ
◦ rMΘ

.

Operator DG has the following properties:

(1) DG is an involution.

(2) DG takes irreducible representations to irreducible ones.

(3) If σ is an irreducible cuspidal representation, then DG(σ) = (−1)|∆|σ.

(4) For a standard Levi subgroup M = MΘ, we have

DG ◦ iM = iM ◦DM .

(5) For a standard Levi subgroup M = MΘ, we have

rM ◦DG = Ad(w) ◦Dw−1(M) ◦ rw−1(M),

where w is the longest element of the set {w ∈ W : w−1(Θ) > 0}.

Let us now describe the groups that we consider. We look at the usual
towers of orthogonal or symplectic groups Gn = G(Vn) that are the groups
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of isometries of F -spaces (Vn, ( , )), n ≥ 0, where the form ( , ) is non-
degenerate and it is skew-symmetric if the tower is symplectic and symmetric
otherwise. The set of standard parabolic subgroups will be fixed in a usual
way. Then the Levi factors of standard parabolic subgroups have the form
M ∼= GL(n1, F )×GL(n2, F )×· · ·×GL(nk, F )×Gn′ . If δi is a representation
of GL(ni, F ), for i = 1, 2, . . . , k, and τ a representation of Gn′ , the induced
representation iM(δ1⊗δ2⊗· · ·⊗δk⊗τ) will be denoted by δ1×δ2×· · ·×δkoτ .
We use a similar notation to denote a parabolically induced representation
of GL(m,F ).

If π is an irreducible representation of Gn, we denote by π̂ the represen-
tation ±DGn(π), taking the sign + or − such that π̂ is a positive element
in the Grothendieck group of finite-length admissible representations of Gn.
We call π̂ the Aubert dual of π.

By Irr(Gn) we denote the set of all irreducible admissible representations
of Gn. Furthermore, let R(Gn) denote the Grothendieck group of admissi-
ble representations of finite length of Gn and define R(G) = ⊕n≥0R(Gn).
Similarly, let Irr(GL(n, F )) denote the set of all irreducible admissible rep-
resentations of GL(n, F ), let R(GL(n, F )) denote the Grothendieck group of
admissible representations of finite length of GL(n, F ) and define R(GL) =
⊕n≥0R(GL(n, F )).

The generalized principal series are the induced representations of the
form δ o σ, where δ ∈ R(GL) is an irreducible essentially square-integrable
representation and σ ∈ R(G) is a discrete series representation.

There is a unique e(δ) ∈ R such that ν−e(δ)δ is unitarizable, where
ν = | det |F . If e(δ) > 0, the generalized principal series δ o σ has a unique
irreducible (Langlands) quotient, which is also the unique irreducible sub-

representation of δ̃ o σ, where δ̃ denotes the contragredient of δ.
By the results of [23], such representation δ is attached to the segment and

we write δ = δ([νaρ, νbρ]), where a, b ∈ R are such that b−a is a nonnegative
integer and ρ ∈ Irr(GL(n, F )) is an unitary cuspidal representation. We
recall that δ([νaρ, νbρ]) is the unique irreducible subrepresentation of the
induced representation νbρ× νb−1ρ× · · · × νaρ.

For our Jacquet module considerations is more covenient to use the sub-
representation version of the Langlands classification and write a non-tempered
irreducible representation π of Gn as the unique irreducible (Langlands) sub-
representation of the induced representation of the form δ1 × δ2 × · · · × δk o
τ , where τ ∈ Irr(Gm) is a tempered representation, δi ∈ Irr(GL(ni, F ))
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is an essentially square-integrable representation attached to the segment
[νaiρi, ν

biρi] for i = 1, 2, . . . , k, and a1 + b1 ≤ a2 + b2 ≤ · · · ≤ ak + bk < 0. In
this case, we write π = L(δ1 × δ2 × · · · × δk o τ).

For σ ∈ Irr(Gn) and 1 ≤ k ≤ n we denote by r(k)(σ) the normalized
Jacquet module of σ with respect to the parabolic subgroup having Levi fac-
tor equal to GL(k, F )×Gn−k. We identify r(k)(σ) with its semisimplification
in R(GL(k, F ))⊗R(Gn−k) and consider

µ∗(σ) = 1⊗ σ +
n∑

k=1

r(k)(σ) ∈ R(GL)⊗R(G).

The following result, derived in [21], presents the crucial structural for-
mula for our calculations of Jacquet modules.

Theorem 2.2. Let ρ be an irreducible cuspidal representation of GL(m,F )
and k, l ∈ R such that k + l ∈ Z≥0. Let σ be an admissible representation of
finite length of Gn. Write µ∗(σ) =

∑
τ,σ′ τ ⊗ σ′. Then we have

µ∗(δ([ν−kρ, ν lρ])o σ) =
l∑

i=−k−1

l∑
j=i

∑
τ,σ′

δ([ν−iρ̃, νkρ̃])× δ([νj+1ρ, ν lρ])× τ⊗

⊗ δ([νi+1ρ, νjρ])o σ′.

We omit δ([νxρ, νyρ]) if x > y.

We note the following direct consequence of the previous theorem and of
the Casselman square-integrability criterion.

Corollary 2.3. Let ρ denote an irreducible self-contragedient cuspidal rep-
resentation of GL(m,F ) and k, l ∈ R such that k + l ∈ Z≥0 and k > 0. If
σ ∈ Irr(Gn) is a discrete series representation, then µ∗(δ([ν−kρ, ν lρ]) o σ)
contains an irreducible constituent of the form νrρ′⊗π, where r ≤ 0 and ρ′ is
cuspidal, if and only if l ≤ 0. Furthermore, if l ≤ 0 and µ∗(δ([ν−kρ, ν lρ])oσ)
contains an irreducible constituent of the form νrρ′ ⊗ π, where r ≤ 0 and ρ′

is cuspidal, then r = l and ρ′ ∼= ρ.

The following technical result will be used several times in the paper.

Lemma 2.4. Suppose that π ∈ Irr(Gn) is a subrepresentation of an in-
duced representation of the form νa1ρ1 × νa2ρ2 × · · · × νakρk o π1, where
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ρi ∈ Irr(GL(mi, F )) is a unitary cuspidal self-contragredient representation
for i = 1, 2, . . . , k, and π1 is an admissible representation of finite length.
Then the Jacquet module of π̂ with respect to an appropriate parabolic sub-
group contains an irreducible representation of the form ν−a1ρ1 ⊗ ν−a2ρ2 ⊗
· · · ⊗ ν−akρk ⊗ π2.

Proof. Frobenius reciprocity and transitivity of Jacquet modules imply that
there is an irreducible cuspidal representation π′ such that the Jacquet mod-
ule of π with respect to an appropriate parabolic subgroup contains the
irreducible cuspidal representation νa1ρ1 ⊗ νa2ρ2 ⊗ · · · ⊗ νakρk ⊗ π′. Using
Theorem 2.1, we obtain the claim of the lemma.

We note that one can also deduce that the representation π2 appearing
in the statement of the previous lemma is in fact isomorphic to π̂1. However,
we will not use this in the sequel.

We will now recall the Mœglin-Tadić classification of discrete series for
groups that we consider. Every discrete series representation ofGn is uniquely
determined by three invariants: the partial cuspidal support, the Jordan
block and the ϵ-function.

The partial cuspidal support of a discrete series σ ∈ Irr(Gn) is an ir-
reducible cuspidal representation σcusp of some Gm such that there is an
irreducible admissible representation π of GL(n − m,F ) such that σ is a
subrepresentation of π o σcusp.

The Jordan block of σ, denoted by Jord(σ), is the set of all pairs (c, ρ)
where ρ is an irreducible cuspidal self-contragredient representation of some
GL(nρ, F ) and c > 0 is an integer such that the following two conditions are
satisfied:

(1) c is even if and only if L(s, ρ, r) has a pole at s = 0. The local L-function
L(s, ρ, r) is the one defined by Shahidi (see for instance [19], [20]), where
r =

∧2 Cnρ is the exterior-square representation of the standard repre-
sentation on Cnρ of GL(nρ,C) if Gn is a symplectic or even-orthogonal
group, and r = Sym2Cnρ is the symmetric-square representation of the
standard representation on Cnρ of GL(nρ,C) if Gn is an odd-orthogonal
group.

(2) The induced representation δ([ν−(c−1)/2ρ, ν(c−1)/2ρ])o σ is irreducible.

To explain the notion of the ϵ-function, we will first define Jordan triples.
This are triples of the form (Jord, σ′, ϵ) where
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• σ′ is an irreducible cuspidal representation of some Gn.

• Jord is the finite set (possibly empty) of ordered pairs (c, ρ), where
ρ ∈ Irr(GL(nρ, F )) is a self-contragredient cuspidal representation, and
c is a positive integer which is even if and only if L(s, ρ, r) has a pole
at s = 0 (for the local L-function as above). For an irreducible self-
contragredient cuspidal representation ρ of GL(nρ, F ) we write Jordρ =
{c : (c, ρ) ∈ Jord}. If Jordρ ̸= ∅ and c ∈ Jordρ, we put c = max{d ∈
Jordρ : d < c}, if it exists.

• ϵ is the function defined on a subset of Jord∪(Jord× Jord) and attains
the values 1 and -1. If (c, ρ) ∈ Jord, then ϵ(c, ρ) is not defined if and
only if c is odd and (c′, ρ) ∈ Jord(σ′) for some positive integer c′. Next,
ϵ is defined on a pair ((c, ρ), (c′, ρ′)) ∈ Jord× Jord if and only if ρ ∼= ρ′

and c ̸= c′.

Suppose that, for the Jordan triple (Jord, σ′, ϵ), there is a (c, ρ) ∈ Jord
such that ϵ((c , ρ), (c, ρ)) = 1. If we put Jord′ = Jord \{(c , ρ), (c, ρ)} and
consider the restriction ϵ′ of ϵ to Jord′ ∪(Jord′ × Jord′), we obtain a new
Jordan triple (Jord′, σ′, ϵ′), and we say that such Jordan triple is subordinated
to (Jord, σ′, ϵ).

We say that the Jordan triple (Jord, σ′, ϵ) is a triple of alternated type
if ϵ((c , ρ), (c, ρ)) = −1 whenever c is defined and there is an increasing
bijection ϕρ : Jordρ → Jord′

ρ(σ
′), where Jord′

ρ(σ
′) equals Jordρ(σ

′) ∪ {0} if a
is even and ϵ(min Jordρ, ρ) = 1, and Jord′

ρ(σ
′) equals Jordρ(σ

′) otherwise.
The Jordan triple (Jord, σ′, ϵ) dominates the Jordan triple (Jord′, σ′, ϵ′)

if there is a sequence of Jordan triples (Jordi, σ
′, ϵi), 0 ≤ i ≤ k, such that

(Jord0, σ
′, ϵ0) = (Jord, σ′, ϵ), (Jordk, σ

′, ϵk) = (Jord′, σ′, ϵ′), and (Jordi, σ
′, ϵi)

is subordinated to (Jordi−1, σ
′, ϵi−1) for i ∈ {1, 2, . . . , k}. The Jordan triple

(Jord, σ′, ϵ) is called admissible if it dominates a triple of alternated type.
Classification given in [14] and [16] states that there is a one-to-one corre-

spondence between the set of all discrete series in Irr(G) and the set of all ad-
missible triples (Jord, σ′, ϵ) given by σ = σ(Jord,σ′,ϵ), such that σcusp = σ′ and
Jord(σ) = Jord. Furthermore, if (c, ρ) ∈ Jord is such that ϵ((c , ρ), (c, ρ)) =
1, we set Jord′ = Jord \{(c , ρ), (c, ρ)} and consider the restriction ϵ′ of ϵ to
Jord′ ∪(Jord′ × Jord′). Then (Jord′, σ′, ϵ′) is an admissible triple and σ is a
subrepresentation of δ([ν−(c −1)/2ρ, ν(c−1)/2ρ])o σ(Jord′,σ′,ϵ′).

An irreducible representation σ ∈ R(G) is called strongly positive if for
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every embedding

σ ↪→ νs1ρ1 × νs2ρ2 × · · · × νskρk o σcusp,

where ρi ∈ R, i = 1, 2, . . . , k, are irreducible cuspidal unitary representations
and σcusp ∈ R(G) is an irreducible cuspidal representation, we have si > 0
for i = 1, 2, . . . , k.

It has been shown in [14, Proposition 5.3] and [16, Proposition 7.1] that
triples of alternated type correspond to strongly positive discrete series. Let
us recall an inductive description of the non-cuspidal strongly positive dis-
crete series, obtained in [5, Theorem 5.1], which also holds in the classical
group case.

Proposition 2.5. Suppose that σsp ∈ R(G) is an irreducible strongly posi-
tive representation and let ρ ∈ Irr(GL(m,F )) denote an irreducible cuspidal
representation such that some twist of ρ appears in the cuspidal support of
σsp. We denote by σcusp the partial cuspidal support of σsp. Then there exist
unique a, b ∈ R such that a > 0, b > 0, b − a is a non-negative integer, and
a unique irreducible strongly positive representation σ

(1)
sp without νaρ in the

cuspidal support, with the property that σsp is a unique irreducible subrepre-

sentation of δ([νaρ, νbρ])oσ
(1)
sp . Furthermore, there is a non-negative integer

l such that α := a + l > 0 and ναρ o σcusp reduces. If l = 0 there are no

twists of ρ appearing in the cuspidal support of σ
(1)
sp , and if l > 0 there ex-

ist a unique b′ > b and a unique strongly positive discrete series σ
(2)
sp , which

contains neither νaρ nor νa+1ρ in its cuspidal support, such that σ
(1)
sp can be

written as the unique irreducible subrepresentation of δ([νa+1ρ, νb′ρ])o σ
(2)
sp .

We say that a representation σ ∈ Irr(Gn) belongs to the set D(ρ1, . . . , ρm;
σcusp) if every element of the cuspidal support of σ belongs to the set {νxρ1, . . .,
νxρm, σcusp : x ∈ R}, where ρ1, . . . , ρm are mutually non-isomorphic irre-
ducible cuspidal representations of general linear groups and σcusp is an irre-
ducible cuspidal representation of Gn′ , for some n′ ≤ n.

We note that for a self-contragredient cuspidal ρ ∈ Irr(GL(m,F )) and
a cuspidal σcusp ∈ Irr(Gn), there is a unique non-negative α such that the
induced representation ναρ o σcusp reduces, and it follows from [1] and [15,
Théorème 3.1.1] that α is a half-integer.

Directly from the previous proposition we obtain
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Proposition 2.6. Let σsp ∈ Irr(Gn) denote a strongly positive represen-
tation and suppose that σsp ∈ D(ρ; σcusp), for an irreducible cuspidal self-
contragredient representation ρ. Let α stand for the unique non-negative
half-integer such that ναρoσcusp reduces, and let k = ⌈α⌉, the smallest inte-
ger which is not smaller than α. If k = 0, then σsp

∼= σcusp. Otherwise, there
exists a unique k-tuple (a1, a2, . . . , ak) such that ai−α ∈ Z for i = 1, 2, . . . , k,
−1 < a1 < a2 < . . . < ak, and σsp is the unique irreducible subrepresentation
of the induced representation

δ([να−k+1ρ, νa1ρ])× δ([να−k+2ρ, νa2ρ])× · · · × δ([ναρ, νakρ])o σcusp.

3 Langlands quotients fixed by the Aubert

involution

In this section we describe all Langlands quotients of the generalized principal
series δoσ which are isomorphic to their Aubert duals, using a case-by-case
considerations. We write δ = δ([νxρ, νyρ]), for x, y such that x+ y > 0. The
induced representation δo σ then contains a unique irreducible (Langlands)
quotient, which is also the unique irreducible subrepresentation of the in-
duced representation δ([ν−yρ̃, ν−xρ̃])oσ, and in what follows will be denoted

by π, i.e., let π = L(δ̃ o σ).

Lemma 3.1. If π is isomorphic to π̂, then x ≥ 0.

Proof. Since x+ y > 0, we obviously have y > 0. Suppose that x < 0. From
the embedding π ↪→ ν−xρ̃× δ([ν−yρ̃, ν−x−1ρ̃])o σ and transtivity of Jacquet
modules, in the same way as in the proof of Lemma 2.4 we obtain that µ∗(π̂)
contains an irreducible constituent of the form νxρ ⊗ π′. Since y ̸= x, it
follows directly from the structural formula that µ∗(δ([ν−yρ̃, ν−xρ̃])oσ) does
not contain such an irreducible constituent, so π̂ is not isomorphic to π, a
contradiction.

Let us first consider the case of cuspidal σ.

Proposition 3.2. Suppose that σ ∈ Irr(Gn) is a cuspidal representation.
Then the representation π is isomorphic to its Aubert dual if and only if one
of the following holds:

(1) x = y > 0 and the induced representation νxρo σ is irreducible,
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(2) (x, y) = (0, 1) and the induced representation ρo σ reduces.

Proof. We have already seen that if π ∼= π̂ then x ≥ 0. In the same way as
in the proof of the previous lemma we deduce that µ∗(π̂) ≥ ν−xρ̃ ⊗ π′, for
some irreducible representation π′. From the structural formula we see that
this is possible only if either x = y or (x, ρ̃) = (0, ρ).

Let us first consider the case x = y. Note that then we have x > 0.
Furthermore, if νxρo σ reduces, it follows from [17, Proposition 3.1(i)] that
µ∗(π) does not contain an irreducible constituent of the form ν−xρ̃ ⊗ π′.
Consequently, if π ∼= π̂ and x = y, then νxρo σ is irreducible.

Conversely, if the induced representation νxρo σ is irreducible then π ∼=
νxρo σ and from the part (4) of Theorem 2.1 we have π̂ ≤ νxρo σ ∼= π, so
π is isomorphic to its Aubert dual.

Let us now assume that x = 0 and ρ ∼= ρ̃. Let s denote a unique non-
negative half-integer such that νsρ o σ reduces. We obviously have y > 0
and there are two possibilities to consider.

First, suppose that y = s and let σsp stand for a unique irreducible sub-
representation of the induced representation νρ × ν2ρ × · · · × νyρ o σ. It
follows from [5, Theorem 4.6] that σsp is a strongly positive discrete series
and one can see directly from [16, Proposition 2.1] that the induced repre-
sentation ρ o σsp reduces. By [22, Section 4], there is a unique irreducible
subrepresentation τ of ρoσsp such that µ∗(τ) does not contain an irreducible
constituent of the form νρ⊗π′. Furthermore, if µ∗(τ) contains an irreducible
constituent of the form νaρ ⊗ π′

1, then a = 0. Thus, if µ∗(τ̂) contains an
irreducible constituent of the form νaρ⊗π′

2, then a = 0. Since τ is a subrep-
resentation of ρ×νρ×ν2ρ×· · ·×νyρoσ, using Lemma 2.4 we deduce that τ̂
is a subrepresentation of ρ×ν−1ρ×ν−2ρ×· · ·×ν−yρoσ and, in the same way
as in the proof of [11, Lemma 3.4], we deduce that τ̂ is a subrepresentation
of δ([ν−yρ, ρ])o σ. Consequently, τ̂ ∼= π and π̂ ̸∼= π.

Now, suppose that y ̸= s. If y ≥ 2, we have the following embedding and
isomorphism:

π ↪→ δ([ν−y+1ρ, ρ])× ν−yρo σ ∼= νyρ× δ([ν−y+1ρ, ρ])o σ.

Lemma 2.4 implies that µ∗(π̂) contains an irreducible constituent of the form
ν−yρ⊗π′ and it follows directly from the structural formula that π̂ ̸∼= π. Thus,
we can assume that y = 1. If s > 0, then s ̸= y and [17, Theorem 4.1(i)]
imply that δ([ν−1ρ, ρ])oσ is irreducible and π ∼= δ([ρ, νρ])oσ. Consequently,

11



if s > 0 then µ∗(π̂) contains an irreducible constituent of the form ν−1ρ⊗π′,
and it follows directly from the structural formula that π̂ ̸∼= π.

It remains to consider the case s = 0. According to [17, Theorem 2.1], in
R(G) we have

δ([ρ, νρ])o σ = π + σ
(1)
ds + σ

(2)
ds ,

where σ
(1)
ds and σ

(2)
ds are mutually non-isomorphic discrete series subrepresen-

tations of δ([ρ, νρ])oσ. Frobenius reciprocity implies that both µ∗(σ
(1)
ds ) and

µ∗(σ
(2)
ds ) contain irreducible constituents of the form νρ⊗ π′. It follows from

the structural formula that only irreducible constituents of the form νρ⊗ π′

appearing in µ∗(δ([ρ, νρ]) o σ) are νρ ⊗ τ1 and νρ ⊗ τ−1, where τ1 and τ−1

are irreducible mutually non-isomorphic tempered representations such that
in R(G) we have ρo σ = τ1 + τ−1. Furthermore, both νρ⊗ τ1 and νρ⊗ τ−1

appear in µ∗(δ([ρ, νρ])o σ) with multiplicity one. Thus, µ∗(π) does not con-
tain an irreducible constituent of the form νρ⊗ π′ and, consequently, µ∗(π̂)
does not contain an irreducible constituent of the form ν−1ρ ⊗ π′′. Since π
is a subrepresentation of ρ × νρ o σ, using Lemma 2.4 we obtain that π̂ is
a subrepresentation of ρ × ν−1ρ o σ and it follows that π̂ is a unique irre-
ducible subrepresentation of δ([ν−1ρ, ρ])o σ, i.e., π ∼= π̂. This completes the
proof.

In the rest of this section we assume that σ is a non-cuspidal discrete
series representation, and let σcusp denote the partial cuspidal support of σ.

Lemma 3.3. If π is isomorphic to π̂, then σ ∈ D(ρ;σcusp). In particular, ρ
is self-contragredient.

Proof. Suppose that σ ̸∈ D(ρ;σcusp). Then there is an embedding of the form
σ ↪→ νaρ′oσ′, such that a > 0, ρ′ is an irreducible self-contragredient cuspidal
representation which is not isomorphic to ρ, and σ′ is irreducible. We have
π ↪→ δ̃× νaρ′oσ′ ∼= νaρ′× δ̃oσ′, and Lemma 2.4, together with transitivity
of Jacquet modules, implies that Jacquet module of π̂ with respect to an
appropriate parabolic subgroup contains an irreducible representation of the
form ν−aρ′ ⊗ σ′′. Since σ is square-integrable, it follows that µ∗(δ o σ) does
not contain an irreducible constituent of the form ν−aρ′ ⊗ σ′′. Thus, π is not
isomorphic to π̂, a contradiction.

According to the previous lemma, in what follows we can assume that ρ
is a self-contragredient representation and that σ ∈ D(ρ;σcusp). We denote
by α a unique non-negative half-integer s such that νsρo σcusp reduces.
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The following result presents the crucial step towards our description.

Theorem 3.4. If π is isomorphic to π̂, then σ is a strongly positive discrete
series. In particular, α > 0.

Proof. Suppose, on the contrary, that σ is not a strongly positive repre-
sentation and let (Jord(σ), σcusp, ϵσ) denote the corresponding Jordan triple.
Since we have σ ∈ D(ρ;σcusp), there is c ∈ Jordρ(σ) such that c is defined
and ϵσ((c , ρ), (c, ρ)) = 1. Also, σ is a subrepresentation of an induced rep-

resentation of the form δ([ν− c −1
2 ρ, ν

c−1
2 ρ]) o σ′, for an appropriate discrete

series σ′. Using [16, Lemma 3.2], we deduce that σ is a subrepresentation

of an induced representation of the form ν
c−1
2 ρ o π1, for some irreducible

π1. Since c−1
2

≥ 1 and −x ≤ 0, if (c, x) ̸= (3, 0) we obtain an embedding

π ↪→ ν
c−1
2 ρ × δ([ν−yρ, ν−xρ]) o π1. Lemma 2.4 implies that µ∗(π̂) contains

an irreducible constituent of the form ν− c−1
2 ρ⊗π2, and Corollary 2.3 implies

that x = c−1
2
.

If c > 3, we also have c−3
2

> − c−1
2

+ 1, which gives the following embed-
dings and isomorphisms:

π ↪→ δ([ν−yρ, ν− c−1
2 ρ])× δ([ν− c −1

2 ρ, ν
c−1
2 ρ])o σ′

↪→ δ([ν−yρ, ν− c−1
2 ρ])× ν

c−1
2 ρ× ν

c−3
2 ρ× δ([ν− c −1

2 ρ, ν
c−5
2 ρ])o σ′

∼= ν
c−1
2 ρ× δ([ν−yρ, ν− c−1

2 ρ])× ν
c−3
2 ρ× δ([ν− c −1

2 ρ, ν
c−5
2 ρ])o σ′

∼= ν
c−1
2 ρ× ν

c−3
2 ρ× δ([ν−yρ, ν− c−1

2 ρ])× δ([ν− c −1
2 ρ, ν

c−5
2 ρ])o σ′.

Since π ∼= π̂, Lemma 2.4 and transitivity of Jacquet modules imply that
the Jacquet module of π with respect to an appropriate parabolic subgroup
contains an irreducible representation of the form ν− c−1

2 ρ⊗ ν− c−3
2 ρ⊗ π3.

From π ↪→ δ([ν−yρ, ν− c−1
2 ρ])o σ, using the structural formula recalled in

Theorem 2.2, we obtain that ν− c−3
2 ρ⊗ π3 ≤ µ∗(δ([ν−yρ, ν− c+1

2 ρ])o σ), which
is impossible.

It remains to consider the case c = 3. This directly implies that c = 1
and x ∈ {0, 1}. In other words, σ is a subrepresentation of an induced
representation of the form δ([ρ, νρ]) o σ′, where σ′ is a discrete series such
that 1 and 3 do not appear in Jordρ(σ

′), and it follows that σ′ is a strongly
positive representation, since otherwise we can apply the same arguments as
before to deduce that π is not isomorphic to π̂.
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Let us first assume that Jordρ(σ
′) ̸= ∅. Then, as in [5, Section 4] and

[16, Proposition 2.1], we see that there is an a ≥ 2 such that σ′ is a subrep-
resentation of νaρ o σ′′, for an appropriate strongly positive representation
σ′′.

If a > 2, we have σ ↪→ νaρ × δ([ρ, νρ]) o σ′′. Since x ∈ {0, 1}, in the
same way as before we deduce that µ∗(π) ≥ ν−aρ ⊗ π′, for an irreducible
representation π′, which is impossible.

If a = 2, the irreducible representation σ′ is also a subrepresentation of
an induced representation of the form ν2ρ × νρ o σ1. If x = 0, we have the
following embeddings:

π ↪→ δ([ν−yρ, ρ])× δ([ρ, νρ])× ν2ρ× νρo σ1

↪→ ρ× νρ× ν2ρ× δ([ν−yρ, ν−1ρ])× ρ× νρo σ1

↪→ ρ× νρ× ν2ρ× ν−1ρ× ρ× νρ× δ([ν−yρ, ν−2ρ])o σ1.

Using Lemma 2.4 and transitivity of Jacquet modules, we obtain that the
Jacquet module of π with respect to an appropriate parabolic subgroup con-
tains an irreducible representation of the form ρ ⊗ ν−1ρ ⊗ ν−2ρ ⊗ νρ ⊗ ρ ⊗
ν−1ρ⊗π4. Since σ is a discrete series representation, applying the structural
formula several times, we deduce that y ≥ 2 and that νρ ⊗ ρ ⊗ ν−1ρ ⊗ π4

is contained in the Jacquet module of δ([ν−yρ, ν−3ρ]) o σ with respect to
an appropriate parabolic subgroup. This directly implies that the Jacquet
module of σ with respect to an appropriate parabolic subgroup contains an
irreducible representation of the form νρ⊗ ρ⊗ ν−1ρ⊗ π5, contradicting the
square-integrability criterion. The case x = 1 can be handled in the same
way.

Let us now assume that Jordρ(σ
′) = ∅. This implies that σ′ is a cuspidal

representation and ρoσ′ reduces. As in the proof of Proposition 3.2, in R(G)
we have ρ o σ′ = τ1 + τ−1 and there is a unique i ∈ {1,−1} such that σ is
the unique irreducible subrepresentation of νρoτi or, equivalently, such that
µ∗(σ) ≥ νρ ⊗ τi. It follows from [12, Theorem 5.1] that σ̂ ∼= L(ν−1ρ o τ−i),
and if an irreducible constituent of the form νzρ⊗ π′ appears in µ∗(σ̂), then
z = −1.

Again, we comment only the case x = 0, since the case x = 1 can be
handled in the same way.

We have the following embeddings:

π ↪→ δ([ν−yρ, ρ])o σ ↪→ ρ× ν−1ρ× · · · × ν−yρo σ (1)

↪→ ρ× ν−1ρ× · · · × ν−yρ× νρo τi.
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Frobenius reciprocity implies that the Jacquet module of π with respect to
an appropriate parabolic subgroup contains the irreducible representation

ρ⊗ ν−1ρ⊗ · · · ⊗ ν−yρ⊗ νρ⊗ τi. (2)

Since π ∼= π̂, applying Theorem 2.1, part (4), to the induced representation
appearing in (1), we deduce that π is an irreducible subquotient of

ρ× ν−1ρ× · · · × ν−yρo L(ν−1ρo τ−i). (3)

Using a repeated application of the structural formula and τi ̸∼= τ−i, one can
show that the irreducible representation (2) is not contained in the Jacquet
module of the induced representation (3) with respect to an appropriate
parabolic subgroup, a contradiction. This completes the proof.

We denote ⌈α⌉ by k, and let (a1, a2, . . . , ak) denote a unique ordered k-
tuple such that ai − α ∈ Z for i = 1, 2, . . . , k, −1 < a1 < a2 < . . . < ak, and
such that σ is the unique irreducible subrepresentation of

δ([να−k+1ρ, νa1ρ])× δ([να−k+2ρ, νa2ρ])× · · · × δ([ναρ, νakρ])o σcusp.

We note that such a k-tuple exists by Proposition 2.6. Since σ is non-cuspidal,
there is an i ∈ {1, 2, . . . , k} such that ai ≥ α−k+i. Let us denote the minimal
such i by imin.

Lemma 3.5. If π is isomorphic to π̂, then aimin
= α − k + imin and for

j = imin, imin + 1, . . . , k − 1 we have aj+1 = aj + 1.

Proof. It follows from [7, Theorem 4.6], or from [13, Section 8], that σ is
a subrepresentation of an induced representation of the form νaiminρ o σsp,
where σsp is a strongly positive representation. If −x ̸= aimin

− 1, we have
an embedding π ↪→ νaiminρ × δ([ν−yρ, ν−xρ]) o σsp, and an application of
Corollary 2.3 and Lemma 2.4 gives x = aimin

.
If −x = aimin

− 1, since x ≥ 0 and aimin
≥ 1

2
, it follows that x ∈ {0, 1

2
}.

Thus, if −x = aimin
− 1 then imin = 1 and aimin

= α− k + 1.
Let us now assume that −x ̸= aimin

− 1 and aimin
≥ α − k + imin + 1.

It follows that aimin
≥ 3

2
, so x = aimin

and −x < aimin
− 1. There is a

strongly positive representation σ′
sp such that σ is a subrepresentation of

νaiminρ× νaimin
−1ρo σ′

sp, so we have an embedding π ↪→ νaiminρ× νaimin
−1ρ×

δ([ν−yρ, ν−xρ]) o σ′
sp. Since π ∼= π̂, it follows that the Jacquet module of
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π with respect to an appropriate parabolic subgroup contains an irreducible
representation of the form ν−aiminρ ⊗ ν−aimin

+1ρ ⊗ π′. From the structural
formula we directly obtain that then µ∗(δ([ν−yρ, ν−aimin

−1ρ]) o σ) contains
ν−aimin

+1ρ⊗ π′, a contradiction. Consequently, aimin
= α− k + imin.

Now we assume that there is a j ∈ {imin, imin + 1, . . . , k − 1} such that
aj+1 ̸= aj + 1. It follows from [5, Section 4] that aj+1 ≥ aj + 2 and π is a
subrepresentation of an induced representation of the form νaj+1ρo σ′

sp, for
a strongly positive representation σ′

sp. Since we obviously have that aj+1 >
−x+1, there is an embedding π ↪→ νaj+1ρ× δ([ν−yρ, ν−xρ])oσ′

sp. This leads
to µ∗(π) ≥ ν−aj+1ρ⊗ π′, for some irreducible π′, contradicting Corollary 2.3,
since x < aj+1. This completes the proof.

In the following theorem we state our first main result.

Theorem 3.6. Suppose that α is a half-integer. Then π is isomorphic to π̂
if and only if α ≥ 3

2
, aimin

≥ 3
2
, x = aimin

, and y = α + 1.

Theorem 3.6 follows from the following two propositions:

Proposition 3.7. Suppose that α is a half-integer and π ∼= π̂. Then α ≥ 3
2
,

aimin
≥ 3

2
, x = aimin

, and y = α + 1.

Proof. Let us first show that x = aimin
. We have an embedding σ ↪→ νaiminρo

σsp, for some strongly positive representation σsp. Since x ≥ 0 and aimin
> 0,

if (x, aimin
) ̸= (1

2
, 1
2
), we obtain an embedding π ↪→ νaiminρ×δ([ν−yρ, ν−xρ])o

σsp, which implies that µ∗(π) contains an irreducible constituent of the form
ν−aiminρ ⊗ π1, since π ∼= π̂. This is possible only if x = aimin

. Thus, in any
case we have x = aimin

.
Let us now prove that aimin

≥ 3
2
. Assume, on the contrary, that aimin

= 1
2
.

Using Lemma 3.5 and [17, Theorem 5.1], we obtain that νzρoσ is irreducible
for z ̸∈ {1

2
, α + 1}. If y ̸∈ {1

2
, α + 1}, we have the following embedding and

isomorphism:

π ↪→ δ([ν−y+1ρ, ν− 1
2ρ])× ν−yρo σ ∼= νyρ× δ([ν−y+1ρ, ν− 1

2ρ])o σ.

In the same way as before we conclude that µ∗(π) contains an irreducible
constituent of the form ν−yρ ⊗ π1, which is impossible unless y = 1

2
. Thus,

y ∈ {1
2
, α + 1}.

It follows at once that π is a subrepresentation of ν− 1
2ρ×δ([ν−yρ, ν− 3

2ρ])o
σ, and Lemma 2.4, together with transitivity of Jacquet modules, shows that
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µ∗(π) contains an irreducible constituent of the form ν
1
2ρ⊗π1. We will show

that this is impossible, implying aimin
≥ 3

2
. Note that ϵσ(ρ, 2) = 1, where

(Jord(σ), σcusp, ϵσ) stands for the Jordan triple corresponding to σ, so we use
[17, Theorem 5.1(ii)]. Only the case y = α + 1 and α ≥ 3

2
will be described

in detail, since other cases can be obtained in the same way and the case
(y, α) = (3

2
, 1
2
) is also, in the split case, discussed in [4]. The following

equality holds in R(G):

δ([ν
1
2ρ, να+1ρ])o σ = π + L(δ([ν−α−1ρ, ν

1
2ρ])o σ(1)

sp )+

+ L(δ([ν−αρ, ν− 1
2ρ])o σ(2)

sp ) + L(δ([ν−αρ, ν
1
2ρ])o σ(3)

sp ),

where σ
(1)
sp is the unique irreducible subrepresentation of ν

3
2ρ × ν

5
2ρ × · · · ×

ναρo σcusp, σ
(2)
sp is the unique irreducible subrepresentation of ν

1
2ρ× ν

3
2ρ×

· · · × να−1ρ× δ([ναρ, να+1ρ])o σcusp, and σ
(3)
sp is the unique irreducible sub-

representation of ν
3
2ρ× ν

5
2ρ× · · · × να−1ρ× δ([ναρ, να+1ρ])o σcusp. We note

that σ
(i)
sp is strongly positive, for i = 1, 2, 3.

Using the structural formula, we obtain that if ν
1
2ρ⊗ π1 is an irreducible

constituent of µ∗(δ([ν
1
2ρ, να+1ρ])o σ), then π1 is an irreducible subquotient

of δ([ν
1
2ρ, να+1ρ])o σ

(1)
sp . By [17, Theorem 5.1(i)], in R(G) we have:

δ([ν
1
2ρ, να+1ρ])oσ(1)

sp = L(δ([ν−α−1ρ, ν− 1
2ρ])oσ(1)

sp )+L(δ([ν−αρ, ν− 1
2ρ])oσ(3)

sp ).

Furthermore, both irreducible constituents ν
1
2ρ⊗L(δ([ν−α−1ρ, ν− 1

2ρ])oσ
(1)
sp )

and ν
1
2ρ ⊗ L(δ([ν−αρ, ν− 1

2ρ]) o σ
(3)
sp ) appear in µ∗(δ([ν

1
2ρ, να+1ρ]) o σ) with

multiplicity one, and Frobenius reciprocity implies that both µ∗(L(δ([ν−α−1ρ,

ν
1
2ρ])oσ

(1)
sp )) and µ∗(L(δ([ν−αρ, ν

1
2ρ])oσ

(3)
sp )) contain irreducible constituents

of the form ν
1
2ρ⊗π1, so µ

∗(π) does not contain such an irreducible constituent.
Since aimin

≥ 3
2
, Lemma 3.5 implies that α ≥ 3

2
. From y ≥ aimin

, using [17,
Proposition 3.1], we obtain that νyρo σ is irreducible if y ̸= α+ 1. Suppose
that y ̸= α + 1. Then we have the following embedding and isomorphism:

π ↪→ δ([ν−y+1ρ, ν−xρ])× ν−yρo σ ∼= νyρ× δ([ν−y+1ρ, ν−xρ])o σ.

In the same way as before we conclude that µ∗(π) contains an irreducible con-
stituent of the form ν−yρ⊗ π1, which is impossible unless x = y. Thus, y =
aimin

. It follows from Lemma 3.5 and [17, Proposition 3.1] that ν−aiminρoσ ∼=
νaiminρoσ, so π is an irreducible subrepresentation of νaiminρ× νaiminρoσsp.
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Consequently, Lemma 2.4 and transitivity of Jacquet modules imply that
the Jacquet module of π with respect to an appropriate parabolic sub-
group contains an irreducible representation of the form ν−aiminρ⊗ν−aiminρ⊗
π2, and an easy application of Theorem 2.2 implies the Jacquet module of
δ([ν−yρ, ν−xρ]) o σ with respect to an appropriate parabolic subgroup does
not contain such a representation. Thus, y = α + 1, and the proposition is
proved.

Proposition 3.8. Suppose that α is a half-integer, α ≥ 3
2
, aimin

≥ 3
2
, x =

aimin
, and y = α + 1. Then π is isomorphic to π̂.

Proof. Let us first prove that if an irreducible constituent of the form νzρ⊗π1,
with z ≥ 0, appears in µ∗(π), then z = aimin

. Using the structural formula
and [7, Theorem 4.6], we deduce that if an irreducible constituent of the
form νzρ ⊗ π1, with z ≥ 0, appears in µ∗(δ([ν−α−1ρ, ν−aiminρ]) o σ), then
z ∈ {aimin

, α + 1}.
By [17, Proposition 3.1(i)], in R(G) we have

δ([νaiminρ, να+1ρ])o σ = π + L(δ([ν−αρ, ν−aiminρ])o σsp),

where σsp denotes the unique irreducible subrepresentation of

νaiminρ× νaimin
+1ρ× · · · × να−1ρ× δ([ναρ, να+1ρ])o σcusp.

We note that σsp is a strongly positive representation. Using [7, Theorem 4.6],
Frobenius reciprocity, and transitivity of Jacquet modules, we obtain that
µ∗(L(δ([ν−αρ, ν−aiminρ])oσsp)) contains an irreducible constituent of the form
να+1ρ⊗π′. The induced representation δ([νaiminρ, ναρ])oσ is irreducible (by
[17, Proposition 3.1(ii)]), so the only such irreducible constituent appearing
in µ∗(δ([νaiminρ, να+1ρ]) o σ) is να+1ρ ⊗ δ([νaiminρ, ναρ]) o σ, which appears
there with multiplicity one. Therefore, there is no irreducible constituent of
the form να+1ρ ⊗ π1 appearing in µ∗(π). Furthermore, Lemma 2.4 implies
that if an irreducible constituent of the form νzρ ⊗ π1, with z ≤ 0, appears
in µ∗(π̂), then z = −aimin

.
Since π is a subrepresentation of δ([ν−α−1ρ, ν−aiminρ])o σ and aimin

≥ 3
2
,

we have the following embedding and isomorphisms:

π ↪→ νaiminρ× · · · × ναρ× ν−aiminρ× · · · × ν−αρ× ν−α−1ρo σcusp

∼= νaiminρ× · · · × ναρ× ν−aiminρ× · · · × ν−αρ× να+1ρo σcusp

∼= νaiminρ× · · · × ναρ× να+1ρ× ν−aiminρ×× · · · × ν−αρo σcusp.
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Using Lemma 2.4, Theorem 2.1, and [16, Lemma 3.1], we obtain that π̂ is a
subrepresentation of the induced representation

ν−aiminρ× · · · × ν−α−1ρ× νaiminρ× · · · × ναρo σcusp.

It follows from [16, Lemma 3.2] that there is an irreducible subquotient
π1 of ν−aiminρ × · · · × ν−α−1ρ such that π̂ is a subrepresentation of π1 ×
×νaiminρ × · · · × ναρ o σcusp. Since µ∗(π̂) does not contain an irreducible
constituent of the form νzρ ⊗ π1 for z ≤ 0 and z ̸= −aimin

, we deduce that
π1

∼= δ([ν−α−1ρ, ν−aiminρ]).
By [16, Lemma 3.2], there is an irreducible representation π′ such that π̂ is

a subrepresentation of δ([ν−α−1ρ, ν−aiminρ])o π′ and, obviously, the cuspidal
support of π′ equals {νaiminρ, νaimin

+1ρ, . . . , ναρ, σcusp}.
Let us first suppose that π′ is a non-tempered representation and write

π′ ∼= L(δ1×δ2×· · ·×δkoτ), where δi ∈ Irr(GL(ni, F )) is an irreducible essen-
tially square-integrable representation, for i = 1, 2, . . . , k, e(δi) ≤ e(δi+1) < 0
for i = 1, 2, . . . , k − 1, and τ ∈ Irr(Gn′) is a irreducible tempered represen-
tation. Write δi = δ([νaiρ, νbiρ]). From ai + bi < 0 and from the description
of the cuspidal support of π′ follows that bi ≤ −aimin

, for i = 1, 2, . . . , k. It
directly follows that π′ is a subrepresentation of an induced representation
of the form νb1ρo π′′ and, since −α ≤ b1, we have the following embedding
and isomorphism:

π̂ ↪→ δ([ν−α−1ρ, ν−aiminρ])× νb1ρo π′′ ∼= νb1ρ× δ([ν−α−1ρ, ν−aiminρ])o π′′,

and it follows that µ∗(π̂) contains an irreducible constituent of the form
νb1ρ⊗ π2, which is impossible unless b1 = −aimin

. If this is the case, we have
an embedding

π̂ ↪→ ν−aiminρ× ν−aiminρ× δ([ν−α−1ρ, ν−aimin
−1ρ])o π′′

and Lemma 2.4 and transitivity of Jacquet modules imply that the Jacquet
module of π with respect to an appropriate parabolic subgroup contains
an irreducible representation of the form νaiminρ ⊗ νaiminρ ⊗ π2. Using the
structural formula, [7, Theorem 4.6], and the fact that α + 1 > aimin

, we
deduce that a representation of the form νaiminρ⊗νaiminρ⊗π2 does not appear
in the Jacquet module of the induced representation δ([ν−α−1ρ, ν−aiminρ])oσ
with respect to an appropriate parabolic subgroup, a contradiction.

Consequently, π′ is a tempered representation and, using the descrip-
tion of its cuspidal support and [6, Theorem 3.5], we conclude that π′ is
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strongly positive. Since the strongly positive representation is completely
determined by its cuspidal support ([7, Lemma 3.5]), it follows at once
that π′ is isomorphic to σ. Thus, π̂ is an irreducible subrepresentation of
δ([ν−α−1ρ, ν−aiminρ])o σ, leading to π̂ ∼= π. This completes the proof.

Now we state our second main result.

Theorem 3.9. Suppose that α is an integer. Then π is isomorphic to π̂ if
and only if y = α + 1 and either x = aimin

or (aimin
, x) = (1, 0).

Theorem 3.9 follows from the following two propositions:

Proposition 3.10. Suppose that α is an integer and π ∼= π̂. Then y = α+1
and either x = aimin

or (aimin
, x) = (1, 0).

Proof. If aimin
≥ 2, in the same way as in the proof of Proposition 3.7, we

deduce that (x, y) = (aimin
, α + 1).

Let us now assume that aimin
= 1. Then σ is a subrepresentation of an

induced representation of the form νρoσ′ and if x > 0 we have an embedding
π ↪→ νρ×δ([ν−yρ, ν−xρ])oσ′. In the same way as in the proof of Proposition
3.7, we get that x ∈ {0, 1}. Note that y > x if x = 0. Let us prove that
y = α + 1. Suppose, contrary to our assumption, that y ̸= α + 1. Since
y ≥ x, it follows from [17, Proposition 3.1] that νyρ o σ is irreducible. We
have

π ↪→ δ([ν−y+1ρ, ν−xρ])× ν−yρo σ ∼= δ([ν−y+1ρ, ν−xρ])× νyρo σ,

and if y ̸= −x+1 one obtains a contradiction in the same way as in the proof
of Proposition 3.7. Since y ≥ x and x ≥ 0, we see that y = −x + 1 holds
only if (x, y) = (0, 1). In that case, we have π ↪→ ρ × νρ × νρ o σ′. Using
Lemma 2.4 and transitivity of Jacquet modules we get that rM(π) contains an
irreducible representation of the form ρ⊗ν−1ρ⊗ν−1ρ⊗σ′′, where M denotes
the Levi factor of an appropriate parabolic subgroup. But, since σ is strongly
positive, rM(δ([ρ, νρ])o σ) does not contain an irreducible representation of
the form ρ⊗ν−1ρ⊗ν−1ρ⊗σ′, a contradiction. This completes the proof.

Proposition 3.11. Suppose that α is an integer. If y = α + 1 and either
x = aimin

or (aimin
, x) = (1, 0), then π is isomorphic to π̂.
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Proof. First we suppose that (x, y) = (aimin
, α+1). Let us prove that if µ∗(π)

contains an irreducible constituent of the form νzρ⊗π′, with z ≥ 0, then z =
aimin

. It follows from the structural formula that if µ∗(δ([νaiminρ, να+1ρ])oσ)
contains an irreducible constituent of the form νzρ ⊗ π′, with z ≥ 0, then
z ∈ {aimin

, α + 1}. Also, if z = α + 1, then π′ is an irreducible subquotient
of δ([νaiminρ, ναρ])o σ. By [17, Proposition 3.1], δ([νaiminρ, ναρ])o σ is irre-
ducible and να+1ρ⊗δ([νaiminρ, ναρ])oσ is contained in µ∗(δ([νaiminρ, να+1ρ])o
σ) with multiplicity one. Using [17, Proposition 3.1(i)], we deduce that in
R(G) holds δ([νaiminρ, να+1ρ]) o σ = π + L(δ([ν−αρ, ν−aiminρ]) o σsp), where
σsp denotes the unique irreducible subrepresentation of

νaiminρ× νaimin+1ρ× · · · × να−1ρ× δ([ναρ, να+1ρ])o σcusp.

We note that σsp is a strongly positive representation. It is now easy to
conclude, using Frobenius reciprocity and irreducibility of νxρ×να+1ρ for x <
α, that µ∗(L(δ([ν−αρ, ν−aiminρ])oσsp)) contains an irreducible constituent of
the form να+1ρ⊗π′, so µ∗(π) does not contain such an irreducible constituent.
Now, in the same way as in the proof of Proposition 3.8, we obtain that π̂ is
a subrepresentation of δ([ν−α−1ρ, ν−aiminρ])o σ, i.e., π ∼= π̂.

Now we turn our attention to the case (aimin
, x, y) = (1, 0, α+ 1). In this

case, we have the following embedding and isomorphisms:

π ↪→ ρ× ν−1ρ× · · · × ν−α−1ρ× νρ× ν2ρ× · · · × ναρo σcusp

∼= ρ× νρ× ν2ρ× · · · × ναρ× ν−1ρ× · · · × ν−αρ× ν−α−1ρo σcusp

∼= ρ× νρ× ν2ρ× · · · × ναρ× ν−1ρ× · · · × ν−αρ× να+1ρo σcusp

∼= ρ× νρ× ν2ρ× · · · × ναρ× να+1ρ× ν−1ρ× · · · × ν−αρo σcusp.

In the same way as before, we obtain that π̂ is a subrepresentation of the
induced representation

ρ× ν−1ρ× ν−2ρ× · · · × ν−αρ× ν−α−1ρ× νρ× · · · × ναρo σcusp.

We will show that if µ∗(π) contains an irreducible constituent of the form
νzρ⊗π1, with z ≥ 0, then z = 0. The rest of the proof then follows the same
lines as in the proof of Proposition 3.8.

Note that if an irreducible constituent of the form νzρ⊗ π1, with z ≥ 0,
appears in µ∗(δ([ρ, να+1ρ]) o σ), then z ∈ {0, 1, α + 1}. We will comment
only the case α ≥ 2, since the case α = 1 can be handled in the same way
but more easily, and in the split case it can also be obtained using [4].
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According to [17, Theorem 4.1(iv)], in R(G) we have

δ([ρ, να+1ρ])o σ = π + L(δ([ν−α−1ρ, νρ])o σ(1)
sp )+

+ L(δ([ν−αρ, ρ])o σ(2)
sp ) + L(δ([ν−αρ, νρ])o σ(3)

sp ),

where σ
(1)
sp is the unique irreducible subrepresentation of ν2ρ × · · · × ναρ o

σcusp, σ
(2)
sp is the unique irreducible subrepresentation of νρ × · · · × να−1ρ ×

δ([ναρ, να+1ρ]) o σcusp, and σ
(3)
sp is the unique irreducible subrepresentation

of ν2ρ × · · · × να−1ρ × δ([ναρ, να+1ρ]) o σcusp. We note that σ
(i)
sp is strongly

positive for i = 1, 2, 3.
If µ∗(δ([ρ, να+1ρ]) o σ) contains an irreducible constituent of the form

νρ⊗ π1, then π1 is an irreducible subquotient of δ([ρ, να+1ρ])o σ
(1)
sp . By [17,

Theorem 4.1(ii)], in R(G) we have

δ([ρ, να+1ρ])o σ(1)
sp = L(δ([ν−α−1ρ, ρ])o σ(1)

sp ) + L(δ([ν−αρ, ρ])o σ(3)
sp ).

Also, νρ ⊗ L(δ([ν−α−1ρ, ρ]) o σ
(1)
sp ) and νρ ⊗ L(δ([ν−αρ, ρ]) o σ

(3)
sp ) appear

in µ∗(δ([ρ, να+1ρ])o σ) with multiplicity one and are obviously contained in

µ∗(L(δ([ν−α−1ρ, νρ])o σ
(1)
sp )) and in µ∗(L(δ([ν−αρ, νρ])o σ

(3)
sp )). Thus, there

are no irreducible constituents of the form νρ⊗ π1 appearing in µ∗(π).
Similarly, if µ∗(δ([ρ, να+1ρ]) o σ) contains an irreducible constituent of

the form να+1ρ⊗ π1, then π1 is an irreducible subquotient of δ([ρ, ναρ])o σ.
By [17, Theorem 4.1(iii)], in R(G) we have

δ([ρ, ναρ])o σ = L(δ([ν−αρ, ρ])o σ) + L(δ([ν−αρ, νρ])o σ(1)
sp ).

Also, να+1ρ ⊗ L(δ([ν−αρ, ρ]) o σsp) and να+1ρ ⊗ L(δ([ν−αρ, νρ]) o σ
(1)
sp ) ap-

pear in µ∗(δ([ρ, να+1ρ]) o σ) with multiplicity one and obviously appear in

µ∗(L(δ([ν−αρ, ρ])oσ
(2)
sp )) and in µ∗(L(δ([ν−αρ, νρ])oσ

(3)
sp )). Thus, µ∗(π) does

not contain irreducible constituents of the form να+1ρ ⊗ π1. Consequently,
µ∗(π) does not contain an irreducible constituent of the form νzρ⊗ π1 with
z > 0, and the proposition is proved.
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